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Abstract

This report summarizes the result of LDRD project 12-0395, titled “Automated Algorithms for
Quantum-level Accuracy in Atomistic Simulations.” During the course of this LDRD, we have
developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten-
tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques
to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms,
which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local
environment of each atom is characterized by a set of bispectrum components of the local neighbor
density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef-
ficients are determined using weighted least-squares linear regression against the full QM training
set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets
using many bispectrum components. The calculation of the bispectrum components and the SNAP
potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization
methods in the DAKOTA software package are used to seek out good choices of hyperparameters
that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack-
age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem,
solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential
for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly,
in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw
dislocation motion. We also present results from SNAP potentials generated for indium phosphide
(InP) and silica (SiO2). We describe efficient algorithms for calculating SNAP forces and energies
in molecular dynamics simulations using massively parallel computers and advanced processor ar-
chitectures. Finally, we briefly describe the MSM method for efficient calculation of electrostatic
interactions on massively parallel computers.
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Chapter 1

Introduction

Classical molecular dynamics simulation (MD) is a powerful approach for describing the mechan-
ical, chemical, and thermodynamic behavior of solid and fluid materials in a rigorous manner [10].
The material is modeled as a large collection of point masses (atoms) whose motion is tracked
by integrating the classical equations of motion to obtain the positions and velocities of the atoms
at a large number of timesteps. The forces on the atoms are specified by an inter-atomic poten-
tial that defines the potential energy of the system as a function of the atom positions. Typical
inter-atomic potentials are computationally inexpensive and capture the basic physics of electron-
mediated atomic interactions of important classes of materials, such as molecular liquids and crys-
talline metals. Efficient MD codes running on commodity workstations are commonly used to
simulate systems with N = 105− 106 atoms, the scale at which many interesting physical and
chemical phenomena emerge. Quantum molecular dynamics (QMD) is a much more computa-
tionally intensive method for solving a similar physics problem [21]. Instead of assuming a fixed
interatomic potential, the forces on atoms are obtained by explicitly solving the quantum electronic
structure of the valence electrons at each timestep. Because MD potentials are short-ranged, the
computational complexity of MD generally scales as O(N), whereas QMD calculations require
global self-consistent convergence of the electronic structure, whose computational cost is O(Nα

e ),
where α = 2−3 and Ne is the number of electrons. For the same reasons, MD is amenable to spatial
decomposition on parallel computers, while QMD calculations allow only limited parallelism.

As a result, while high accuracy QMD simulations have supplanted MD in the range N =
10−100 atoms, QMD is still intractable for N > 1000, even using the largest supercomputers. Con-
versely, typical MD potentials often exhibit behavior that is inconsistent with QMD simulations.
This has led to great interest in the development of MD potentials that match the QMD results
for small systems, but can still be scaled to the interesting regime N = 105−106 atoms.[5, 3, 20].
These quantum-accurate potentials require many more floating point operations per atom com-
pared to simpler potentials, but they are still short-ranged. So the computational cost remains
O(N), but with a larger algorithm pre-factor. In this report, we present a new quantum-accurate
potential called SNAP. We explain the mathematical structure of the potential and the way in which
we fit the potential parameters to a database of quantum electronic structure calculations. We then
present results for the SNAP potentials that we have developed for tantalum, indium phosphide,
and silica. After these results, we briefly describe the implementation of the SNAP potential in
the LAMMPS code, including serial and parallel performance and some other details of the SNAP
algorithm. We conclude with a summary and future research directions.
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Chapter 2

Mathematical Formulation

2.1 Bispectrum components

The quantum mechanical principle of near-sightedness tells us that the electron density at a point is
only weakly affected by atoms that are not near. This provides support for the common assumption
that the energy of a configuration of atoms is dominated by contributions from clusters of atoms
that are near to each other. It is reasonable then to seek out descriptors of local structure and build
energy models based on these descriptors. Typically, this is done by identifying geometrical struc-
tures, such as pair distances and bond angles, or chemical structures, such as bonds. Interatomic
potentials based on these approaches often produce useful qualitative models for different types
of materials, but it can be difficult or impossible to adjust these potentials to accurately reproduce
known properties of specific materials. Recently, Bartok et al. have studied several infinite classes
of descriptor that are related to the density of neighbors in the spherically symmetric space cen-
tered on one atom[5, 6, 4]. They demonstrated that by adding descriptors of successively higher
order, it was possible to systematically reduce the mismatch between the potential and the target
data. One of these descriptors, the bispectrum of the neighbor density mapped on to the 3-sphere,
forms the basis for their Gaussian Approximation Potential (GAP)[5]. We also use the bispectrum,
which we derive below, as the basis for our SNAP potential.

The density of neighbor atoms around a central atom i at location r can be considered as a sum
of δ -functions located in a three-dimensional space:

ρi(r) = δ (r)+ ∑
rii′<Rii′

fc(rii′)wi′δ (r− rii′) (2.1)

where rii′ is the vector joining the position of the central atom i to neighbor atom i′. The
wi′ coefficients are dimensionless weights that are chosen to distinguish atoms of different types,
while the central atom is arbitrarily assigned a unit weight. The sum is over all atoms i′ within
some species-dependent cutoff distance:

Rii′ = αcut(ri + ri′) (2.2)

The function fc(r) ensures that the contribution of each neighbor atom goes smoothly to zero at Rii′ ,
ri and ri′ are species-dependent cutoff radii, and αcut is a constant factor. The angular part of this
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density function can be expanded in the familiar basis of spherical harmonic functions Y l
m(θ ,φ).

The radial component is often expanded in a separate set of radial basis functions that multiply the
spherical harmonics. Bartok et al. made a different choice, mapping the radial distance r within
the cut-off distance on to a third polar angle θ0 defined by,

θ0 = θ
max
0

r
Rii′

(2.3)

The additional angle θ0 allows the set of points (θ ,φ ,r) in the 3D ball of possible neighbor
positions to be mapped on to the set of points (θ ,φ ,θ0) that are a subset of the 3-sphere. Points
south of the latitude θ max

0 are excluded. It is advantageous to use most of the 3-sphere, while
still excluding the region near the south pole where the configurational space becomes highly
compressed.

The natural basis for functions on the 3-sphere is formed by the 4D hyperspherical harmonics
U j

m,m′(θ0,θ ,φ), defined for j = 0, 1
2 ,1, . . . and m,m′=− j,− j+1, . . . , j−1, j [37]. These functions

also happen to be the elements of the unitary transformation matrices for spherical harmonics
under rotation by angle 2θ0 about the axis defined by (θ ,φ). When the rotation is parameterized
in terms of the three Euler angles, these functions are better known as D j

m,m′(α,β ,γ), the Wigner
D-functions, which form the representations of the SO(3) rotational group [22, 37]. Dropping the
atom index i, the neighbor density function can be expanded in the U j

m,m′ functions

ρ(r) =
∞

∑
j=0, 1

2 ,...

j

∑
m=− j

j

∑
m′=− j

u j
m,m′U

j
m,m′(θ0,θ ,φ) (2.4)

where each expansion coefficient u j
m,m′ is given by the inner product of the neighbor density

with the basis function. Because the neighbor density is a weighted sum of δ -functions, each
expansion coefficient can be written as a sum over discrete values of the corresponding basis func-
tion,

u j
m,m′ =U j

m,m′(0,0,0)+ ∑
rii′<Rcut

fc(rii′)wi′U
j

m,m′(θ0,θ ,φ) (2.5)

The expansion coefficients u j
m,m′ are complex-valued and they are not directly useful as de-

scriptors, because they are not invariant under rotation of the polar coordinate frame. However,
the following scalar triple products of expansion coefficients can be shown to be real-valued and
invariant under rotation[4].

B j1, j2, j =
j1

∑
m1,m′1=− j1

j2

∑
m2,m′2=− j2

j

∑
m,m′=− j

(u j
m,m′)

∗H
jmm′

j1m1m′1
j2m2m′2

u j1
m1,m′1

u j2
m2,m′2

(2.6)
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The constants H
jmm′

j1m1m′1
j2m2m′2

are coupling coefficients, analogous to the Clebsch-Gordan coefficients
for rotations on the 2-sphere. These invariants are the components of the bispectrum. They charac-
terize the strength of density correlations at three points on the 3-sphere. The lowest-order compo-
nents describe the coarsest features of the density function, while higher-order components reflect
finer detail. An analogous bispectrum can be defined on the 2-sphere in terms of the spherical har-
monics. In this case, the components of the bispectrum are a superset of the second and third order
bond-orientational order parameters developed by Steinhardt et al.[32]. These in turn are specific
instances of the order parameters introduced in Landau’s theory of phase transitions[18].

The coupling coefficients are non-zero only for non-negative integer and half-integer values of
j1, j2, and j satisfying the conditions ‖ j1− j2‖ ≤ j ≤ j1 + j2 and j1 + j2− j not half-integer[22].
In addition, B j1, j2, j is symmetric in j1 and j2. Hence the number of distinct non-zero bispectrum
components with indices j1, j2, j not exceeding a positive integer J is (J + 1)3. Furthermore, it
can be shown [35] that bispectrum components with reordered indices are related by the following
identity:

B j1, j2, j

2 j+1
=

B j, j2, j1
2 j1 +1

=
B j1, j, j2
2 j2 +1

. (2.7)

We can exploit this equivalence by further restricting j2 ≤ j1 ≤ j, in which case the number
of distinct bispectrum components drops to (J +1)(J +2)(J + 3

2)/3, a three-fold reduction in the
limit of large J.

2.2 SNAP Potential Energy Function

Given the bispectrum components as descriptors of the neighborhood of each atom, it remains to
express the potential energy of a configuration of N atoms in terms of these descriptors. We write
the energy of the system containing N atoms with positions rN as the sum of a reference energy
Ere f and a local energy Elocal

E(rN) = Ere f (rN)+Elocal(rN). (2.8)

The reference energy includes known physical phenomena, such as long-range electrostatic
interactions, for which well-established energy models exist. Elocal must capture all the additional
effects that are not accounted for by the reference energy. Following Bartok et al.[5, 4] we assume
that the local energy can be decomposed into separate contributions for each atom,

Elocal(rN) =
N

∑
i=1

Ei(qi) (2.9)

15



where Ei is the local energy of atom i, which depends on the set of descriptors qi, in our case
the set of K bispectrum components Bi = {Bi

1, . . . ,B
i
K}. The original GAP formulation of Bartok

et al.[5] expressed the local energy in terms of a Gaussian process kernel. For the materials that we
have examined so far, we have found that energies and forces obtained from quantum electronic
structure calculations can be accurately reproduced by linear contributions from the lowest-order
bispectrum components, with linear coefficients that depend only on the chemical identity of the
central atom:

E i
SNAP(B

i) = β
αi
0 +

K

∑
k=1

β
αi
k Bi

k = β
αi
0 +βββ

αi ·Bi (2.10)

where αi is the chemical identity of atom i and β α
k are the linear coefficients for atoms of

type α . Hence the problem of generating the interatomic potential has been reduced to that of
choosing the best values for the linear SNAP coefficients. Since our goal is to reproduce the
accuracy of quantum electronic structure calculations for materials under a range of conditions, it
makes sense to select SNAP coefficients that accurately reproduce quantum calculations for small
configurations of atoms representative of these conditions.

In quantum methods such as density functional theory[21] the most readily computed proper-
ties are total energy, atom forces, and stress tensor. The linear form of the SNAP energy allows us
to write all of these quantities explicitly as linear functions of the SNAP coefficients. We restrict
ourselves here to the case of atoms of a single type, but the results are easily extended to the gen-
eral case of multiple atom types. In the case of total energy, the SNAP contribution can be written
in terms of the bispectrum components of the atoms

ESNAP(rN) = Nβ0 +βββ ·
N

∑
i=1

Bi (2.11)

where βββ is the K-vector of SNAP coefficients and β0 is the constant energy contribution for
each atom. Bi is the K-vector of bispectrum components for atom i. The contribution of the
SNAP energy to the force on atom j can be written in terms of the derivatives of the bispectrum
components w.r.t. r j, the position of atom j

F j
SNAP =−∇ jESNAP =−βββ ·

N

∑
i=1

∂Bi

∂r j
, (2.12)

where F j
SNAP is the force on atom j due to the SNAP energy. Finally, we can write the contri-

bution of the SNAP energy to the stress tensor

WSNAP =−
N

∑
j=1

r j⊗∇ jESNAP =−βββ ·
N

∑
j=1

r j⊗
N

∑
i=1

∂Bi

∂r j
(2.13)
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where WSNAP is the virial tensor due to the SNAP energy and ⊗ is the Cartesian outer product
operator.

All three of these expressions consist of the vector βββ of SNAP coefficients multiplying a vector
of quantities that are calculated from the bispectrum components of atoms in a configuration. This
linear structure greatly simplifies the task of finding the best choice for βββ . We can define a system
of linear equations whose solution corresponds to an optimal choice for βββ , in that it minimizes the
sum of square differences between the above expressions and the corresponding quantum results
defined for a large number of different atomic configurations. This is described in more detail in
the following section.

2.3 Formulation of the Linear Least Squares Problem

The previous section outlined the SNAP formulation. In practice, one needs to determine the val-
ues of the SNAP coefficients, βββ . This section presents how we solve for the K-vector βββ of SNAP
coefficients using a least-squares formulation. The fitting problem is overdetermined, in the sense
that the number of data points that we are fitting to far exceeds the number of SNAP coefficients.
The cost of evaluating the bispectrum components B j1, j2, j increases strongly with the order of the
indices j, j1, and j2. For this reason, K is limited to the range 10− 100. In contrast, with the
availability of high-performance computers and highly optimized electronic structure codes, it is
not difficult to generate data for hundreds or thousands of configurations of atoms. Note that we
refer to a configuration as a set of atoms located at particular positions in a quantum mechanical
calculation. In most cases, the atoms define an infinite repeating structure with specified periodic
lattice vectors. For a particular configuration s, containing Ns atoms, the electronic structure calcu-
lation yields 3Ns+7 data values: the total energy, the 3Ns force components, and the 6 independent
components of the stress tensor. The same quantities are calculated for the reference potential. In
addition, the bispectrum components and derivatives for each atom in the configuration are calcu-
lated. We can use all of this data to construct the following set of linear equations.
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(2.14)

This matrix formulation is of the type A ·βββ = y which can be solved for the coefficients βββ . The

17



optimal solution β̂ββ for this set of equations is [33]:

β̂ββ = argmin
βββ

‖(A ·βββ −y)‖2 = A−1 ·y (2.15)

In practice, we do not explicitly take the inverse of the A matrix, but instead use a QR factorization
to solve for βββ . We have found the linear solve to obtain the optimal SNAP coefficients to be very
fast and not poorly conditioned.

We have also added the capability to perform weighted least squares to weight certain rows
more than others. That is, we add a vector of weights w to the formulation of the minimization
formulation:

β̂ββ = argmin
βββ

‖w◦ (A ·βββ −y)‖2 (2.16)

where ◦ is used to denote element by element multiplication by the weight vector. Thus, each
row in the A matrix and the y vector are multiplied by a weight specified for that row. In this way,
we are able to specify weights per configuration type (e.g. BCC crystals, liquids, etc.) and per
quantity of interest (e.g. energy, force, virial). We have found that the ability to weight different
rows in the A matrix is critical to ensure the regression works well. One reason is that the total
energy, forces, and stress components can vary considerably in relative magnitude, depending on
what units they are expressed in. However, the more important reason is that it is desirable to con-
trol the relative influence of different configurations, depending on the material properties that are
of greatest importance. For example, if we want the SNAP potential to more accurately reproduce
BCC elastic constants, we can increase the weight on the stress components of strained BCC con-
figurations. We also found it helpful to convert all extensive quantities to intensive quantities, in
order to counteract overweighting of configurations with large Ns. Total energy rows were scaled
by the number of atoms and virial components rows were scaled by the cell volume.
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Chapter 3

SNAP Fitting Software in LAMMPS

We describe the framework to generate the SNAP fit within the LAMMPS software tool. We start
with quantum mechanical (QM) training data, generated from ab initio calculations. To obtain
the training data, we perform density functional theory (DFT) simulations for relevant configura-
tions. The training data is populated with information such as atom coordinates, atom types, the
cell matrix, energies, forces, and virials. The training data must be converted to JSON format.
Note that the performance of the SNAP potential will depend on the comprehensiveness of the
configurations in the training set. In the example of tantalum below, we are interested in material
plasticity and stability as well as elastic constants and the lattice parameter. The QM training data
included configurations with various crystal structures, energy-volume, generalized stacking fault,
free surface, and liquid structures.

We have developed a robust, Python-based tool to generate SNAP potentials from training
set data based on the weighted linear regression shown in Equation 2.16. Named fitsnap.py and
described in the User’s Manual included as Appendix A, it has a number of features to simplify
and reduce the time needed to generate a SNAP potential. Some of these include a flexible input
syntax, use of the efficient and widely available linear algebra package NumPy, parallel operation,
and caching of intermediate results for later reuse.

When run, fitsnap.py first converts JSON-format training set data into a configuration format
understood by LAMMPS. It then invokes LAMMPS, which generates the bispectrum components
for the training data configurations. LAMMPS also generates a ZBL repulsive core potential which
serves as the reference potential. This potential is added to the SNAP potential for the total poten-
tial, as explained in Section 2.2 above.

After LAMMPS generates the bispectrum components, fitsnap.py parses its output to collect,
aggregate, and sum the appropriate quantities to create the A matrix defined in Equation 2.14. The
output quantities describe the y vector in Aβ = y, where y includes total and reference energies,
forces, and stress tensors. The fitsnap.py script sends the A matrix, the y vector, and the associ-
ated weights to a least-squares solver which generates the optimal regression coefficients, β̂ . The
resulting coefficients along with several hyperparameters make up the SNAP potential, which is
written out for later use in LAMMPS.

The steps involved in the generation of a SNAP potential are shown in the red box (generation
of training data), orange box (Python script fitsnap.py), and blue box (LAMMPS) on the right side
of Figure 3.1.
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3.1 Optimization of hyperparameters governing the SNAP po-
tential

The steps involved in generating a SNAP potential involve the user specification of several “hy-
perparameters” such as the weights for each training configuration. In addition, the generation of
the bispectrum components is governed by several parameters that the user can specify, including
the highest order terms to include in the bispectrum component calculation and the cutoff distance
defining the neighborhood of an atom in the SNAP bispectrum calculation. It is not obvious how
to choose values of these hyperparameters which will lead to an “optimal” SNAP potential in the
sense of minimizing the SNAP prediction error with respect to energy errors, force errors, or other
quantities.

To determine the optimal hyperparameters governing the SNAP potential, we have used an
optimization framework and placed it around the SNAP calculation to generate many instances of
SNAP potentials. The optimization framework we use is the DAKOTA software [2], which is a
toolkit of optimization and uncertainty quantification methods designed to interface to scientific
computing codes. The process of generating a SNAP potential within an optimization loop to
optimize the governing parameters is shown in Figure 3.1. DAKOTA varies input parameters such
as the weights per configuration group and the cutoff distance. These values are then specified
in the SNAP generation and the SNAP potential is calculated. Once the SNAP coefficients are
generated, they are used to predict the energy and forces of the QM training data. The errors in
the SNAP prediction (defined as the difference between SNAP configuration energies vs. QM
configuration energies, SNAP forces vs. QM forces, etc.) are then aggregated into an objective
function which is returned to DAKOTA and used as the quantity which DAKOTA tries to optimize.

Using this optimization framework, we can identify the SNAP potential that has the “best”
result, according to minimizing an objective function. We have examined various objective func-
tions. Currently the objective function we use involves a weighted sum of the errors with respect
to energies, forces, and virials, as well as errors with respect to the elastic constants. The objective
function is not trivial to define: the resulting SNAP potential can be very sensitive to which error
measures are weighted more in the objective function.
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Figure 3.1. Flowchart of the SNAP Fitting process: the opti-
mization loop coupled with the generation of the SNAP potential
in LAMMPS
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Chapter 4

SNAP Potential for Tantalum

4.1 Training Data

The training set data as well as the validation data for these potentials were computed using density
functional theory (DFT) electronic structure calculations as implemented in the Vienna Ab initio
Simulation Package (VASP)[16]. A variety of different types of atomic configurations were used
to construct the full set of training data, and these are summarized in Table 4.1. Configurations
of different types were chosen to adequately sample the important regions of the potential energy
surface. Configurations of type “Displaced” were constructed by randomly displacing atoms from
their equilibrium lattice sites in supercells of the A15, BCC, and FCC crystal structures. Con-
figurations of type“Elastic” were constructed by applying random strains to primitive cells of the
BCC crystal. The configurations of type “GSF” consist of both relaxed and unrelaxed generalized
stacking faults along the [110] and [112] crystallographic directions. The configurations of type
“Liquid” were taken from a high-temperature quantum molecular dynamics simulations of molten
tantalum. The configurations of type “Surface” consisted of relaxed and unrelaxed [100], [110],
[111], and [112] BCC surfaces. For each type of configuration we specified a weight for the en-
ergy, force, and stress. We set the force and energy weights of the“Elastic” configurations to zero
and we set the stress weights of all other configurations to zero.

In addition to the training data and way in which different quantities were weighted, the quality
of the SNAP potential also was somewhat dependent on the choices made for the reference poten-
tial and the SNAP hyperparameters. Because the training data did not sample highly compressed
configurations, it was important that the reference potential provide a good physical description of
Pauli repulsion that dominates the interaction at close separation. We chose the Ziegler-Biersack-
Littmark (ZBL) empirical potential that has been found to correctly correlate the high-energy scat-
tering of ions with their nuclear charge Zzbl[41]. Because the ZBL potential decays rapidly with
radial separation, we used a switching function to make the energy and force go smoothly to zero
at a distance Rzbl,o, while leaving the potential unchanged for distances less than Rzbl,i. The values
for these three parameters are given in Table 4.2. For the SNAP basis functions, we used the same
sinusoidal switching function as Bartok et al. [5].

fc(r) =
1
2
(cos(πr/Rcut)+1),r ≤ Rcut (4.1)

= 0,r > Rcut (4.2)
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Type Ncon f Natoms Energy Force Stress
Displaced A15 9 64 100 1 -
Displaced BCC 9 54 100 1 -
Displaced FCC 9 48 100 1 -
Elastic BCC 100 2 - - 0.0001
GSF 110 22 24 100 1 -
GSF 112 22 30 100 1 -
Liquid 3 100 100 1 -
Surface 7 30 100 1 -

Table 4.1. DFT data used to fit the SNAP potential for Tantalum

J 3
Rcut 4.67637 Å
θ max

0 0.99363π

Rzbl,i 4.0 Å
Rzbl,o 4.8 Å
Zzbl 73.0

Table 4.2. Definition of SNAP ZBL potential.

The DAKOTA package was used to optimize the value of Rcut so as to minimize the error in the
energies, forces, and elastic constants relative to the training data. The resultant value of Rcut =
4.67637 is physically reasonable, as it includes the 14 nearest neighbors in the BCC crystal, and the
first coordination shell in the melt. The effect of using fewer or more bispectrum components was
examined experimentally by varying J. We found that the fitting errors decreased monotonically
with increasing J, but the marginal improvement also decreased. We found that truncating at J = 3
provided a good tradeoff between accuracy and computational efficiency. The full set of ZBL and
SNAP parameters values are given in Table 4.2, while the values of the SNAP linear coefficients
corresponding to each bispectrum component are listed in Table 4.3

4.2 Validation Results

One of the crucial features of an interatomic potential model is that it predicts the correct minimum
energy crystal structure and that the energetics of competing crystal structures are qualitatively
correct. Figure 4.1 plots the energy per atom computed with the SNAP potential as a function of
volume for the BCC, FCC, A15, and HCP phases. The energy of diamond structure Ta was also
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k 2 j1 2 j2 2 j βk
0 -2.92477
1 0 0 0 -0.01137
2 1 0 1 -0.00775
3 1 1 2 -0.04907
4 2 0 2 -0.15047
5 2 1 3 0.09157
6 2 2 2 0.05590
7 2 2 4 0.05785
8 3 0 3 -0.11615
9 3 1 4 -0.17122
10 3 2 3 -0.10583
11 3 2 5 0.03941
12 3 3 4 -0.11284
13 3 3 6 0.03939
14 4 0 4 -0.07331
15 4 1 5 -0.06582
16 4 2 4 -0.09341
17 4 2 6 -0.10587
18 4 3 5 -0.15497
19 4 4 4 0.04820
20 4 4 6 0.00205
21 5 0 5 0.00060
22 5 1 6 -0.04898
23 5 2 5 -0.05084
24 5 3 6 -0.03371
25 5 4 5 -0.01441
26 5 5 6 -0.01501
27 6 0 6 -0.00599
28 6 2 6 -0.06373
29 6 4 6 0.03965
30 6 6 6 0.01072

Table 4.3. SNAP linear coefficients for tantalum.

computed. As expected, it was found to be substantially (∼2.8 eV/atom) higher than the BCC
phase and is not included on the plot. In addition, energies computed from density functional
theory are included as crosses. It is seen that the relative energy of these phases is correctly
predicted. The BCC phase is the most stable throughout the volume range considered, with the A15
phase somewhat higher. The FCC phase is next with a minimum energy about 0.2 eV/atom above
that of BCC. Note that these energy differences are very consistent with the DFT calculations. The
SNAP predicted HCP energy is also shown. Note that the SNAP potential is able to differentiate
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Figure 4.1. Energy versus volume for various crystal structures
as indicated in the legend, as computed by SNAP (solid curves)
and from DFT (x).

HCP and FCC crystal structures which are structurally very similar. The SNAP potential predicts
that the HCP structure is higher in energy than the FCC structure. This is a prediction in that no
HCP data was used in the potential construction. The relative energies of HCP and FCC are in
agreement with our DFT calculations, which show that lowest energy HCP structure (not shown)
lies 0.04 eV/atom above the minimum energy FCC structure. Further, the SNAP potential predicts
the HCP c/a ratio to be 1.72, which is considerably greater than ideal value c/a≈ 1.63. The DFT
calculations for HCP (not shown) predict an even larger value of c/a = 1.77.

4.3 Melting point and Liquid structure

The melting point predicted by the SNAP potential has been determined. An atomistic slab was
created and brought to temperature above the melting point using a Langevin thermostat until the
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Figure 4.2. Comparison of pair correlation for molten tantalum
calculated using DFT and SNAP

surface of the slab was melted. The molecular dynamics simulation was then continued in an NVE
ensemble. This resulted in a system containing two solid-liquid interfaces. The temperature of the
MD system now fluctuated around the equilibrium melting temperature. It is important that the
solid phase be at the correct melting point density. This was ensured through a simple iterative
procedure. An estimate of the melting point was obtained for an assumed lattice constant, the
lattice constant of the solid at that temperature was determined from an NPT simulation of the
solid, and the melting point was determined with the interfacial area determined by this lattice
constant. This process was iterated until the assumed and predicted melting points agreed.

This procedure predicted a melting point of 2790 K. This value is in reasonable agreement with
the experimental melting point of 3293 K. It should be noted that the melting point is typically a
difficult quantity for interatomic potentials to predict accurately. Further, the comparison with
experiment is not a direct test of the agreement of the SNAP potential with DFT calculations. The
experimental value reflects contributions of the free energy of electronic excitations. Further, the
DFT prediction for the melting point is not known.

While configurations that correspond to molten Ta were used in the training set, it is important
to determine if the potentials actually reproduce the correct distribution of spatial density corre-
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lations in the liquid state. The liquid is an important test of potential models since it samples
configurations that are far from those of the equilibrium solid crystals. In particular, the liquid
structure depends strongly on the repulsive interactions that occur when two atoms approach each
other. We calculated the pair correlation function of the liquid, g(r), both using DFT and from the
SNAP potential. These simulations were performed for the same temperature, 3250 K, and atomic
density of 49.02 atom/nm3. The DFT simulation treated 100 atoms for a period of 2 ps while the
SNAP simulations considered a cell containing 1024 atoms and averaged over 500 ps. Figure 4.2
compares g(r) obtained in the two simulations. The agreement is excellent except perhaps in the
region of the first minimum. Note that there is substantially more statistical uncertainty in the DFT
result due to the short simulation time and the DFT structure cannot be determined beyond about
0.6 nm, due to the smaller simulation cell. These results indicate that the SNAP potential provides
a good representation of the molten structure.

energy associated with surfaces, unstable stacking faults, vacancies and self-interstitial atoms.
The results obtained from the SNAP potential are compared to our DFT calculations and also
against two other interatomic potential models, the embedded atom method (EAM) model devel-
oped by Zhou et al.[40] and the angular dependent potential (ADP) due to Mishin and Lozovoi[24].

4.4 Dislocations

Figure 4.3 shows the screw dislocation migration energy barrier calculated using DFT and the
SNAP, EAM, and ADP potentials. One of the dominant deformation mechanisms for metallic
materials is the motion of dislocations. For the case of body-centered cubic materials such as
tantalum, the screw dislocations are known to play a crucial role. The structure and motion of
screw dislocations in BCC metals has been examined for many years and is discussed in detail
by Gröger et al.[11] and by references therein. A crucial feature of screw dislocations in BCC
metals is the Peierls barrier which is the energy barrier to move the dislocation to its next stable
configuration. Unlike face-centered-cubic metals where the Peierls barrier is generally negligible,
the barrier in the case of BCC metals is substantial and plays a significant role in mechanical
deformation. As has been shown recently by Weinberger et al.[39], many empirical potentials for
BCC metals predict qualitatively incorrect Peierls barriers. DFT calculations show that the Peierls
is has a simple shape with a single hump while many empirical potentials predict a transition
path with two maxima and a metastable intermediate state. The Peierls barrier computed via the
SNAP potential is shown in Figure 4.3 along with the DFT barrier and the barriers predicted by
the Zhou and ADP potentials. In all cases the barriers were computed based on a dislocation
dipole configuration as described by Weinberger et al.[39]. While the ADP and Zhou potentials
both predict incorrect barriers with an intermediate metastable state, the SNAP potentials predicts
a barrier with a single maximum in agreement with the DFT results. Further, the magnitude of the
barrier is in excellent agreement with the DFT prediction.
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Figure 4.3. Comparison of screw dislocation migration energy
barrier calculated using DFT and the SNAP, EAM, and ADP po-
tentials.
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Chapter 5

SNAP Potential for Indium Phosphide

In our original proposal for this project, we identified indium phosphide (InP) as the second mate-
rial, after tantalum, for which we would develop quantum-accurate interatomic potentials. InP was
chosen for several reasons. Firstly, it provides a good test for the ability of SNAP to distinguish
chemical elements. Secondly, understanding the atomic-scale behavior of defects in crystalline
InP is important in a variety of applications, as described below. Thirdly, InP is representative of
a much larger class of III-V semiconductor compounds and alloys of compounds that are techno-
logically important.

For InP, the goal is to develop a potential that can meaningfully represent the particle dynamics
within a high-energy collision cascade. The target application requires the ability to characterize
the nature and distribution of defects after a high-energy collision cascade. The demands upon an
interatomic potential in such an application are severe, requiring the ability to faithfully reproduce
dynamics at high interaction energies and forces, and also requiring good accuracy in computing
the formation energies of the ultimate displacement damage defects that appear in a cascade. For
GaAs, a Pettifor bond-potential [27] proved adequate for cascade simulations in GaAs, but trial
interatomic potentials have, thus far, been unable to adequately reproduce the chemistry of InP and
other III-V alloys. The intent here is to establish a protocol to create effective SNAP potentials
when needed, enabling dynamical simulations of cascades in arbitrary III-V materials. The first
step is to treat a pure binary compound composed of just two elements. Ultimately it is necessary
to treat the ternary and quaternary compounds of technological interest.

To develop a SNAP potential for a binary compound such as InP requires generalizing the
SNAP potential to capture additional complexity that does not arise in the case of a pure element,
where all atoms have the same chemical identity. In elemental tantalum, the SNAP potential need
only keep track of the distribution of particles in the local environment of each atom. In InP, a
successful potential must be able to distinguish between the different elemental components; the
chemistry around each atom is not just dictated by the positions of nearby particles, but also the
elemental identity of those particles. Within the simple form of SNAP, the means to do this is
not uniquely defined. As described later, we designed and implemented a series of discriminating
aspects into SNAP that do distinguish between different elements. The initial step in the process
is to develop a training set of data that adequately spans the multicomponent chemistry that is
desired.
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5.1 InP training set development

The training set data for InP for the SNAP potentials was composed of small structures, for which
energy, forces, and stress tensors were computed using density functional theory (DFT) electronic
structure calculations. For InP, the DFT calculations were performed with Sandia’s SeqQuest DFT
code (http://dft.sandia.gov/Quest/), using atomic pseudopotentials that placed the indium 4d elec-
trons into the core (treating In as a trivalent atom, within the local density approximation [29].
Additional computational details can be found in a SAND Report that comprehensively described
all simple intrinsic defects using DFT [31]. The specific atomic pseudopotential and DFT func-
tional are not particularly crucial, and other choices might arguably have greater accuracy. For the
development of the training set, the important aspect is to have a consistent computational context
throughout, and to have a training set that reasonably accurately spans the chemical environments
that are potentially of interest in simulations.

The first stage of SNAP development for InP began with a training set composed of a collection
of canonical structures and some extensions intended to yield a comprehensive set of chemical
environments in a process that could potentially be automated. The canonical structures consisted
of a wide sampling of binary stoichiometric crystal structures: the ground state zincblende (B3), the
hexagonal wurzite (B4), ionic B1 and B2, a binary form of the B8 structure (two types), multiple
forms of the cinnabar (B9) structure, a binary forms of the bct-C4 , bct5, β -tin, hcp (two forms)
structures, and SC16 structures. This explored a variety of coordination numbers, bond angles, and
strain. The pure-phosphorus bulk crystal structures were omitted, because conventional DFT does
poorly for discriminating the ground state P crystalline structures. For balance, the pure-In bulk
crystal structures were omitted as well. Each of these crystals was generated at ambient pressure,
and then both isotropically compressed in 4 GPa increments to 40 GPa, and expanded in 2 GPa
increments to -10 GPa, the stability limit under tension. The rationale was both to vary the local
coordination of both elements and also to probe variations of bond lengths and particle densities.
To this was added a series of 8-atom cluster calculations, with pure In8 and P8 cubes, and a series
of In4P4 clusters with the In and P atoms decorating the corners of cube,

The extensions involved a series of bulk samples, designed to encompass the space of some-
what randomized structures that would appear in the damaged regions of a collision cascade in bulk
InP. These bulk samples were represented by 216 atom cubic supercells with periodic boundary
conditions in all three dimensions. A series of molten InP structures were generated by MD simu-
lation using a crude analytic In-P interatomic potential. The atoms in the liquid samples ideally ex-
plore a variety of local chemical environments, with different bonds, coordinations, distances, and
most importantly, defects. The quenched amorphous samples explore near-equilibrium structures
with strains. These molten structures were then computed again with DFT, and the DFT energies,
forces, and stress tensors were put into the training set. In addition, each of these structures was
then relaxed (“quenched”) to a local minimum energy structure using DFT. The DFT results for the
relaxed structures, and a sampling of intermediate configurations were also placed in the training
set. This completed the first stage. Zincblende crystal defect structures were intentionally withheld
from this training set, in order to test the efficacy of the first stage protocol.

This first stage training set proved inadequate. The SNAP fit to this data was tested in a bulk
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melt-and-quench MD simulation using a barostat, and produced an amorphous In-P structure much
denser than nature, and lower in energy than the perfect crystal. In the second stage, the training set
was augmented by DFT calculations of this dense MD structure and intermediate configurations
from its relaxation. This was done first at the MD volume, then at the expected volume (linear di-
mensions scaled by 1.08) and at a larger volume (scaled by 1.16). Similarly, a molten InP structure
from the first stage was both compressed and expanded about its equilibrium volume, to provide
further training data bounding the expected volume.

An MD simulation with the resulting SNAP fit now produced the correct volume, but generated
a new error, forming unphysical tight clusters of phosphorus atoms. Somehow the MD simulation
found a path to allow phosphorus atoms to come to close approach and find an unphysical low-
energy structure. To address this failure, the third stage of the training set added a series of “tight
defect” structures to the training set. These contained a P antisite in the bulk InP zincblende crystal,
i.e. a phosphorous atom replacing an indium atom in the lattice. To bias against tight clustering of
P atoms, the sample first included the relaxed P antisite, and then a series of configurations where
all four P neighbors moved inwards strongly or just one P-P bond was shortened, up to 1 eV/bond
higher in energy. For balance, similar structures with In were added to the training set.

This third stage cured the tight clustering problem in the MD simulation. However, the calcu-
lated defect formation energies were inaccurate. In the fourth stage, the suite of 23 neutral defect
structures, up to this point withheld from the process, was added to the training set. The resultant
potential is referred to as Candidate 13 below. Again, the calculated defect formation energies
were somewhat disappointing. The formation energies of the DFT structures were too low, and
after relaxing these with SNAP, the defect formation energies dropped even more. However, subse-
quent candidate potentials which explored different variations of fitting, such as exploring different
weighting for different aspects of the training set, significantly improved both the unrelaxed and
relaxed defect formation energies. This is described in more detail below.

5.2 InP SNAP development

Indium phosphide required us to generalize the SNAP potential so that we are able to differentiate
elements. Specifically, with InP, each atom can be either indium or phosphorous. These atoms
are of different size and exhibit different chemistries and behaviors in any given local environ-
ment. The original SNAP potential was defined for a pure elemental material where no distinction
between atom types was necessary.

We made distinctions between the In and P atoms by using different neighbor density weights,
by defining element-specific linear coefficients and their bispectrum component contributions, and
by distinct neighbor cutoffs for the different elements. Each of these proved necessary to achieve
a reasonably accurate SNAP candidate for simulating InP. We have included these new features in
the description of the SNAP potential in Section 2.1.

Ultimately, with the failure to produce a viable candidate without including the bulk defects
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structures in the training set, accurately matching these structures became the emphasis of fitting
the later SNAP candidates. We are interested in defect formation energies, but it is not sufficient to
just match the DFT-computed defect formation energies of the training defects. The defect struc-
tures in the training set are fully relaxed according to DFT i.e. energy is a local minimum. But the
structures are not relaxed according to the SNAP potential, unless the SNAP potential perfectly
reproduced the DFT potential energy surface in the vicinity of the defect structures). When we
relaxed the defect structure using the SNAP potential, we found that some SNAP candidates un-
derwent significant further relaxation. The appropriate figure of merit for the intended application
is how closely the relaxed defect energy with SNAP matches the relaxed defect energy in DFT.
While the two relaxed structures might differ somewhat, the goal is to get relaxed energies that are
the same. It should be noted that the symmetry of the bulk crystal guarantees that any reasonable
potential will not allow an further relaxation of the bulk crystal. Hence, relaxation of the defect
structures systematically lowers all the defect formation energies by some amount.

Figure 5.1. Example of a Hyperparameter optimization of the
SNAP InP potential. 19 hyperparameters are being optimized,
driving down the objective as the number of candidates examined
increases.

We spent a significant amount of time optimizing the SNAP potential so that it would produce
accurate relaxed defect energies. We used the genetic algorithm in the DAKOTA toolkit to perform
the optimization. An example of this optimization is shown in Figure 5.1, where the optimization is
performed over 19 hyperparameters governing the SNAP potential. These hyperparameters include
the element radii, and weights for the energies and forces from various groups or configurations.
The objective function being minimized in this figure combines the energy residuals (differences
between SNAP and QM) for all configurations, force residuals for all configurations, and error
in the defect formation energy, both for unrelaxed and relaxed structures. So for each “dot” in
Figure 5.1, we run LAMMPS on approximately 350 structures, do the regression to obtain the
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SNAP coefficients, then use the SNAP potential to relax the defect structures.

Figure 5.2 shows the representative results for a sensitivity analysis. We varied the linear re-
gression weight given to the defect structure group while holding the weights of other groups
constant at their nominal values. We plot the variation of four different quality metrics as the de-
fect group weight is varied from very small to very large. “Energy Error” is the sum of the energy
residuals for all configurations. “Force Error” is the sum of the force residuals for all configura-
tions. “MSD” is the mean square displacement over all atoms during relaxation of structures in
the defect group. “Relaxation” is the sum of the relaxation energies of the defect group structures.
One can see from this figure that the force error remains relatively constant as the defect group
weight is varied, but the overall energy error of all configurations increases while the error of the
relaxation energies of the defect group decreases as the defect weight increases. This type of sensi-
tivity analysis can show us what the trade-offs are and what values of the defect weights we might
use (around 104).

Figure 5.3 shows the defect formation energies calculated with two different SNAP potentials.
The one in red, Candidate 13, has parameters that were hand-tuned, given our knowledge of the
defect structures. The one in blue is the one produced by the optimization discussed in Figure 5.1.
The comparison of these two potentials shows that using DAKOTA to optimize the hyperparame-
ters results in a potential with significantly lower energy error. While the optimized SNAP potential
provides a good overall fit to most of the groups, the defect energy error is still greater than 1 eV
for most of the defect structures. For the intended application of predicting radiation effects this
level of accuracy is marginal. The accuracy for defect formation energies is nonetheless superior to
all existing published potentials, and for this reason, the new SNAP potential is undergoing further
evaluation.
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Figure 5.2. Sensitivity analysis of different metrics as the weight
on the defect group increases in the SNAP InP potential.

Figure 5.3. Errors in SNAP Defect Formation Energy for a vari-
ety of defect structures in Indium Phosphide
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Chapter 6

SNAP Potential for Silica

As the reader is undoubtedly aware, SiO2 is a tremendously important material in many modern
applications, including in the semiconductor industry. It would be of great value to have a quantum-
accurate potential available that could model SiO2 in atomistically correct detail in all of its phases
and polymorphs, as well as at the industrially-significant Si-SiO2 interface. While many SiO2
potentials exist, none are fully up to this challenge. We have attempted to develop a quantum
accurate SNAP potential for SiO2 using the procedures outlined in this report. Results have been
mixed, with some early successes noted, but with much more work still to be done. This chapter
details our first attempts at developing a SNAP potential for SiO2, and presents some preliminary
results for seven SiO2 crystal polymorphs and high-temperature liquid SiO2.

Quest DFT

SNAP Fit

LAMMPS
NPT 

Simulation

Starting Config

Low 
Error?

Add config to 
training set

Done 
?

SNAP Forcefield

Restart
No

Yes

No

Yes

Figure 6.1. Conceptual diagram of the automated fitting proce-
dure used for silica.

The training set for silica was generated on the fly by the following procedure. A LAMMPS
simulation was run using SNAP, and forces were periodically checked by comparing to DFT. If
the force error was low, then the number of timesteps before checking again was increased, and
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the simulation was allowed to continue running. If the force error was high, then that particular
configuration was added to the training set, and the simulation was restarted. A conceptual diagram
of one possible way of implementing this procedure is shown in Figure 6.1. In this manner, the
SNAP potential is generated on the fly (with less expert knowledge needed).

Figure 6.2. Crystal polymorph configurations used as part of the
training data for the SNAP silica potential.

For seven SiO2 crystal polymorphs (see Figure 6.2), the SNAP potential shows very close
agreement (less than 3% error) in the predicted lattice parameters as compared to the lattice con-
stants generated by the SeqQuest QM data (see Figure 6.3). This indicates that the SNAP potential
does a good job representing the equilibrium solid state for at least these SiO2 crystal polymorphs.
We note that good agreement in this regard is relatively easy for a potential to achieve since all
of the atoms are near potential energy minima and do not stray far from those potential wells. A
much more difficult test is one that requires closer atomic approaches as would be seen in a high
temperature liquid state.

We tested our new SNAP silica potential at two high temperature (3120 K and 3700 K) liquid
states and compared the resulting radial distribution functions (RDFs, or g(r)) for O-Si, O-O, and
Si-Si distances against the corresponding DFT-computed RDFs from the literature (see Ref. [15])
as shown in Figure 6.4. The agreement is remarkably good, indicating that our new SNAP SiO2
potential adequately captures the correct structure of liquid SiO2 at these temperatures. The slight
differences between the 3120 K and the 3700 K RDF curves are nicely mimicked by the SNAP
potential, indicating that the temperature dependency of the RDF is likewise being captured by the
SNAP SiO2 potential.

While these preliminary results for bulk crystalline and molten states are promising, these do
not guarantee that SNAP will perform well for more complicated structures. As we saw in the case
of indium phosphide, matching DFT defect formation energies to within 1 eV is quite a stringent
requirement. We have not yet tested SNAP’s ability to predict defect formation energies.

Another very interesting analysis would be to test the ability of SNAP SiO2 to describe the
structure of Si-SiO2 interfaces. The preliminary SNAP SiO2 potential described here did not
include explicit point charge electrostatic interactions, so it would be difficult for it to capture
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the known effect of charge redistribution across the Si-SiO2 interface. We could address this by
combining SNAP with a variable charge reference potential. This approach is already used by
several existing interatomic potentials for the Si-SiO2 interface, such as COMB and ReaxFF.

Figure 6.3. Agreement between QM results and SNAP estimates
of lattice constant for various crystal polymorph configurations in
silica.

Figure 6.4. Agreement between QM results and SNAP estimates
for liquid silica.
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Chapter 7

Scaling Studies

One possible drawback of the SNAP methodology is computational cost when used in large-scale
atomistic simulations. The number of floating point operations required by SNAP is one to two
orders of magnitude greater than simpler potentials, such as EAM. At the same time, the commu-
nication requirements of SNAP remain similar to those of simpler potentials. These two character-
istics make the SNAP potential suitable for running moderate sized scientific calculations on very
large computers. Typical LAMMPS molecular dynamics (MD) simulations do not scale once the
workload drops below several hundred atoms per processor, due to load imbalance and communi-
cation. With SNAP, we can achieve good scaling even when the workload drops below one atom
per processor. To exploit this unprecedented strong scaling even further, we have developed spe-
cialized algorithms for load-balancing, thread parallelism, and GPU execution. At the same time,
we have exploited a mathematical symmetry in the bispectrum components to reduce the compu-
tational cost of the force calculation. In this chapter, we summarize these algorithmic advances in
scaling and single-node performance. The reader is referred to References [35] and [36] for more
details.

The force on each atom due to the SNAP potential is formally given by Eq. 2.12. In order to
perform this calculation efficiently, we use a neighbor list, as is standard practice in the LAMMPS
code [19, 30]. This list identifies all the neighbors of a given atom i. In order to avoid negative
and half-integer indices, we have switched notation from u j

m,m′ to uη

µ,µ ′ , where η = 2 j, µ = m+ j,

and µ ′ = m′+ j. Analogous transformations are used for H
jmm′

j1m1m′1
j2m2m′2

and B j1, j2, j. This also allows us
to reclaim the symbol j for indexing the neighbor atoms of atom i. Finally, boldface symbols with
omitted indices such as ui are used to indicate a finite multidimensional arrays of the corresponding
indexed variables.

Fig. 7.1 gives the resulting force computation algorithm, where Calc U() calculates all expan-
sion coefficients uη

µ,µ ′ for an atom i while Calc Z() calculates the partial sums Zµ,µ ′
η1,η2,η , which are

defined as

Zm,m′
j1, j2, j =

j1

∑
m1,m′1=− j1

j2

∑
m2,m′2=− j2

H j,m,m′

j1,m1,m′1, j2,m2,m′2
u j1

m1,m′1
u j2

m2,m′2
. (7.1)

In the loop over neighbors, first the derivatives of ui with respect to the distance vector be-
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Compute SNAP():
for i in natoms() {

ui = Calc U(i)
Zi = Calc Z(i,ui)
for j in neighbors(i) {

∇ jui = Calc dUdR(i, j,ui)
∇ jBi = Calc dBdR(i, j,ui,Zi,∇ jui)
Fi j =−βββ ·∇ jBi

Fi += −Fi j; F j += Fi j
} }

Figure 7.1. Base algorithm for the SNAP force calculation.

Function Calc dBdR(i, j):
for (η ,η1,η2) in GetBispectrumIndices() {

∇ jBη1,η2,η = 0
for (µ = 0; µ ≤ η ; µ++ ) {

for (µ ′ = 0; µ ′ ≤ η ; µ ′++) {
∇ jZ

µ,µ ′
η1,η2,η = 0

for (µ1 = max(0,µ +(η1−η2−η)/2);
µ1 ≤min(η1,µ +(η1 +η2−η)/2); µ1++) {

for (µ ′1 = max(0,µ ′+(η1−η2−η)/2);
µ ′1 ≤min(η1,µ

′+(η1 +η2−η)/2); µ ′1++) {
µ2 = µ−µ1 ; µ ′2 = µ ′−µ ′1
∇ jZ

µ,µ ′
η1,η2,η += Hη ,µ,µ ′

η1,µ1,µ
′
1,η2,µ2,µ

′
2

(uη1
µ1,µ

′
1
∇ ju

η2
µ2,µ

′
2
+uη2

µ2,µ
′
2
∇ ju

η1
µ1,µ

′
1
)

} }
∇ jBη1,η2,η += (uη

µ,µ ′)
∗∇ jZ

µ,µ ′
η1,η2,η +Zµ,µ ′

η1,η2,η(∇ ju
η

µ,µ ′)
∗

} } }

Figure 7.2. Original algorithm for the derivative of the bispec-
trum components of atom i w.r.t. the position of atom j using
Eq. 7.2.
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tween atoms i and j are computed in Calc dUdR() and then the derivatives of Bi are computed in
Calc dBdR(), which is the most computationally expensive part of the algorithm. For the parame-
ter sets used in this study, Calc dBdR() is responsible for approximately 90% of all floating point
and memory operations. Thus, we concentrate our description on this function. In the original
calculation, the spatial derivative of the bispectrum components was written as

∇B j1, j2, j =
j

∑
m,m′

(∇u j
m,m′)

∗
j1

∑
m1,m′1

H
jmm′

j1m1m′1
j2m2m′2

u j1
m1,m′1

u j2
m2,m′2

+
j

∑
m,m′

(u j
m,m′)

∗
j1

∑
m1,m′1

H
jmm′

j1m1m′1
j2m2m′2

∇u j1
m1,m′1

u j2
m2,m′2

+
j

∑
m,m′

(u j
m,m′)

∗
j1

∑
m1,m′1

H
jmm′

j1m1m′1
j2m2m′2

u j1
m1,m′1

∇u j2
m2,m′2

(7.2)

where the symbol ∇ denotes the derivative of what follows with respect to the position of
some neighbor atom. We have dropped the double summation over m2 and m′2, as the coupling
coefficients are non-zero only for m2 = m−m1, likewise for m′2. In the first term, the inner double
sum over m1 and m′1 contains no derivatives, and so can be pre-calculated. Hence, for the highest
order bispectrum component ( j1 = j2 = j = J), the computational complexity of this term is O(J2).
However, in the second and third term, the inner double sums contain derivatives and so must be
calculated separately for each neighbor atom and for each entry in the outer double sums over m
and m′. As a result, the computation complexity of the second and third terms is O(J4). In Fig. 7.2
we show the algorithm for Calc dBdR() based on Eq. 7.2.

To examine the parallel performance of the SNAP potential, we ran studies on three high per-
formance computing platforms [36]: Chama at SNL (Intel Sandybridge cluster), Sequoia/Vulcan
at LLNL (IBM BGQ), and Titan at ORNL (Nvidia GPU). The relevant technical attributes of these
machines are summarized in Table 7.1 In all cases, parallelism over nodes was achieved using the
standard LAMMPS spatial decomposition framework [19]. On Chama and Sequoia, additional
parallelism within each node was achieved by distributing the calculations associated with each
neighbor atom over the available cores on the node [36]. On Titan, even greater parallelism was
achieved by decomposing the force contribution due to a single neighbor over many threads. For
all of the tests, micro load balancing was used to achieve good parallel efficiency when the number
of nodes approaches the number of atoms.

Figure 7.3 shows the strong scaling performance of a 246K atom system on the three HPC
platforms. All platforms show nearly ideal scaling over most of the range. At the same node count,
the absolute time to solution on Chama and Titan was about the same, while Sequoia took about
5x longer. In the case of Sequoia, we were able to scale the fixed size problem all the way from
a single node to the entire machine (122,880 nodes). At this point, there were only 2 atoms per
node, the time to solution was still decreasing, and the parallel efficiency was 14%.
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System Nodes Cores Threads Power/Node Perf./Node
Chama 1,230 19,680 39,360 368.8 W 332.8 GFLOP/s
Sequoia/Vulcan 122,880 2.0×106 7.9×106 80.26 W 204.8 GFLOP/s
Titan 18,688 5.0×107 5.4×108 439.3 W 1450.8 GFLOP/s

Table 7.1. Relevant hardware parameters of the platforms used
for strong scaling experiments. Data was obtained from the
November 2013 Top500 list [1].

Figure 7.3. Strong scaling performance of SNAP on three HPC
platforms.

When scaling out to full system size Titan is about two times faster than Sequoia/Vulcan. Most
of this factor is due to Titan having more atoms per node at full scale (∼ 13 versus 2 on Se-
quoia/Vulcan). Thus the surface to volume ratio from the domain decomposition is better and the
GPUs are operating in a range where they can still be filled effectively. This is reflected by the par-
allel efficiencies which drop only to about 50% on Titan compared with 14% on Sequoia/Vulcan.
Chama is not large enough to show any significant loss of parallel efficiency for a system of 246k
atoms. Normalizing the node count by power consumption per node in Fig. 7.4 makes the relative
energy efficiency much clearer. For small to medium node counts, the times to solution are within
20% for all three systems, at the same total power. In this regime Sequoia/Vulcan is actually the
most effective one followed by Titan and then Chama. Only at larger node counts (i.e. less work
per node) does Titan become more efficient than Sequoia/Vulcan. The crossover point is reached
at about 200 atoms per GPU.

In addition to running large numbers of atoms, we spent a significant effort improving the
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Figure 7.4. Power consumption of the three HPCs with the SNAP
algorithm.

way that the bispectrum components are calculated. The non-trivial permutation symmetry in the
bispectrum indices given by Eq. 2.7 allows us to rewrite Eq. 7.2 as

∇B j1, j2, j =
j

∑
m,m′

(∇u j
m,m′)

∗
j1

∑
m1,m′1

H
jmm′

j1m1m′1
j2m2m′2

u j1
m1,m′1

u j2
m2,m′2

(7.3)

+
2 j+1
2 j1 +1

j1

∑
m1,m′1

(∇u j1
m1,m′1

)∗
j

∑
m,m′

H
j1m1m′1
jmm′

j2m2m′2
u j

m,m′u
j2
m2,m′2

+
2 j+1
2 j2 +1

j2

∑
m2,m′2

(∇u j2
m2,m′2

)∗
j1

∑
m1,m′1

H
j2m2m′2
j1m1m′1
jmm′

u j1
m1,m′1

u j
m,m′

Written in this way, all of the inner double sums are free of derivatives and can be pre-
calculated. This has the effect of reducing overall the computational complexity from O(J4) to
O(J2). In Fig. 7.5 we show the improved algorithm based on Eq. 7.3 that takes advantage of the
symmetry relation Eq. 2.7.

In Fig. 7.6 we compare the performance of the original and improved algorithms. Timings
are based on a 10,000 step MD simulations of BCC tantalum crystal using the SNAP potential
described in Section 4.1. The calculations were performed on Sandia’s Chama high-performance
cluster with a dual socket Intel Sandy Bridge processor with 16 cores on each node. Three different
system sizes were used, containing 512, 4096, and 32768 atoms. Each system size was run on 8,
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Function Calc dBdR(i, j):
for (η ,η1,η2) in GetBispectrumIndices() {

∇ jBη1,η2,η = 0
for (µ = 0; µ ≤ η ; µ++ ) {

for (µ ′ = 0; µ ′ ≤ η ; µ ′++) {
∇ jBη1,η2,η += Zµ,µ ′

η1,η2,η(∇ ju
η

µ,µ ′)
∗

} }
for (µ1 = 0; µ1 ≤ η1; µ1++ ) {

for (µ ′1 = 0; µ ′1 ≤ η1; µ ′1++) {
∇ jBη1,η2,η += η+1

η1+1Zµ1,µ
′
1

η ,η2,η1(∇ ju
η1
µ1,µ

′
1
)∗

} }
for (µ2 = 0; µ2 ≤ η2; µ2++ ) {

for (µ ′2 = 0; µ ′2 ≤ η2; µ ′2++) {
∇ jBη1,η2,η += η+1

η2+1Zµ2,µ
′
2

η1,η ,η2(∇ ju
η2
µ2,µ

′
2
)∗

} }
}

Figure 7.5. Improved algorithm for the derivative of the bispec-
trum components of atom i w.r.t. the position of atom j using
Eq. 7.3.

16, 32, 64, 128, and 256 nodes. We plot the time required to calculate one MD time step versus
the number of atoms per node. In this form, results for the three different system sizes are almost
indistinguishable, indicating that both single node performance and strong scaling efficiency are
determined primarily by the number of atoms per node. When the number of atoms per node is
large, the parallel scaling is close to ideal, and the improved algorithm is consistently about 16x
faster than the original algorithm. As the number of atoms per node decreases, this margin also
decreases, due to the parallel efficiency of the improved algorithm decreasing more rapidly.

Finally, Figure 7.7 shows where SNAP fits on the computational cost “map” of interatomic
potentials. The map was generated by plotting the LAMMPS time per timestep for each potential
versus the year in which the potential was published. Generally, the computational cost of poten-
tials is increasing exponentially over time. The computational cost of the original SNAP algorithm
is consistent with this trend. However, the larger speed-up achieved with the improved algorithm
has allowed us to buck this trend, and SNAP is now on a par with other high-accuracy potentials
such as ReaxFF and COMB.
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Figure 7.6. CPU time per MD time step versus atoms per node
for benchmark simulations of BCC tantalum using the original
and improved implementations of the SNAP potential. Results are
shown for systems containing 512, 4096, and 32768 atoms.

Figure 7.7. The computational cost of the original and improved
SNAP implementations relative to other interatomic potentials in
LAMMPS.
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Chapter 8

Electrostatics, MSM method

Since simulations of atomistic, molecular, and coarse-grained systems commonly include point-
charge models, they require the calculation of Coulombic 1/r interactions. And since Coulombic
interactions are inherently long-range in nature, molecular simulations with periodic boundary
conditions that include them must be handled in a special way. Common methods for dealing with
long-range electrostatic interactions include the Ewald sum method, and the FFT-based particle-
particle/particle-mesh (PPPM) method. Unfortunately, the Ewald sum scales poorly and does not
perform well for large systems, and the PPPM method requires FFTs, which does not scale very
well for large core counts. The multilevel summation method (MSM) is a newer alternative that
does not require FFTs and promises to scale better than those older methods.

We have written a parallel version of MSM using domain decomposition for LAMMPS [19],
and have evaluated its performance against LAMMPS’s implementation of Ewald and PPPM for
several typical MD simulation problems. We have also enhanced the MSM method and made all
of these developments freely available in LAMMPS [19], and have published our findings [26].

In both Ewald-based methods and MSM, the Coulombic interaction is split into a short-range
part and a long-range part, as in Figure 8.1, pane (a). Pane (b) of Figure 8.1 shows that for the
MSM algorithm, the long-range part is further split into several different levels. Figure 8.2 provides
further pictorial elaboration of the MSM algorithm concept. One of the improvements we made to
the MSM method involves using a half-sphere of interaction for the MSM direct part as shown in
Figure 8.3.

To test the performance of our MSM implementation in LAMMPS, we ran several test prob-
lems and compared against LAMMPS’s Ewald and PPPM implementations. Figure 8.4 shows the
results of one of our strong scaling tests (ranging from 1 to 512 cores) on the Redsky platform
for the SPC/E water benchmark, using an estimated relative RMS force accuracy of 0.001. These
results represent the total run time and long-range (i.e., kspace) time as reported in the LAMMPS
log file. For total run time on a single processor, PPPM is 1.6 times faster than MSM, while Ewald
is 1.9 times slower than MSM as shown in Figure 8.4(a). For long-range time on a single pro-
cessor, PPPM is 10.9 times faster than MSM, and Ewald is 3.0 times slower than MSM as shown
in Figure 8.4(b). However, for total run time on 512 cores, MSM is 2.3 times faster than PPPM
running on 64 cores, and 1.5 times faster than Ewald running on 512 cores.

All told, we have added several new extensions and improvements to MSM. We implemented
and tested a method for computing the full pressure tensor using MSM and found that computing
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Figure 8.1. Conceptual splitting of the 1/r potential for (a)
Ewald-based methods and (b) MSM with four levels.
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Figure 8.2. Algorithmic steps for MSM with four grid levels.
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(a) (b)

Figure 8.3. Conceptual diagram (in 2D) of (a) the original sphere
of interaction for the direct part and (b) the half-sphere. In practice,
interactions between the central grid point and all grid points inside
the dashed region are computed.

Figure 8.4. CPU time (s) of running the SPC/E water system on
Redsky using 0.001 relative accuracy for (a) total run time and (b)
long-range portion.

the pressure tensor using MSM is relatively expensive as compared to computing the pressure
tensor using other long-range electrostatics methods such as PPPM. A faster way to calculate
the scalar pressure has also been tested. In order to make fair comparisons between the various
methods for computing electrostatic interactions, accurate error estimation methods are needed, so
we improved the usability of the MSM error estimation algorithm, making it compatible with the
error estimation methods for the other electrostatics methods in LAMMPS (PPPM and Ewald). In
addition, we extended MSM to non-orthogonal (triclinic) systems in a manner that requires only a
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few changes to the original algorithm. On a single processor, the direct part in MSM is typically the
bottleneck, and the performance of MSM has been significantly improved by using a half-sphere
for direct part interactions instead of a full sphere.

On a single processor, we found our implementation of MSM to be faster than the implementa-
tion of MSM in the NAMD-lite code. However, despite significant improvements to MSM, PPPM
was still found to be faster for both a SPC/E water system and a solvated rhodopsin protein system
running on a single processor. The Ewald sum was also found to be slower than PPPM on a single
processor, especially for large systems.

In summary, we have written a parallel version of MSM using the highly scalable domain de-
composition method on a distributed memory architecture. Since FFTs represent a major scaling
bottleneck for the PPPM method when running on many cores, it is hoped that a non-FFT method
like MSM can help alleviate this issue. For both the water and the rhodopsin protein test problems
running on Sandia’s Redsky machine, MSM is faster than PPPM when using many cores (when a
many-to-many communication pattern is expensive). However, using only a subset of processors
for PPPM can help to reduce the FFT scaling bottleneck. MSM is more competitive for relatively
low accuracy. On Sandia’s Chama machine however, PPPM was found to perform better than
MSM for all core counts that we tested. This suggests that PPPM should be used for problem sizes
and core counts typically run using current high performance computers. However, the MSM al-
gorithm is still relatively new as compared to well-established FFT-based methods such as PPPM,
and we anticipate that further improvements to the MSM algorithm could enhance its competitive-
ness for calculation of long-range electrostatic interactions. MSM also allows fully non-periodic
long-range electrostatics calculations, which are not possible using Ewald-based methods, and in
a more efficient manner than the fast multipole method (FMM).

We have made our implementation of the MSM algorithm and enhancements freely available in
the LAMMPS [19] molecular simulation package. For more details, please see our full report [26].
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Chapter 9

Summary

The original goal of this project was to develop a capability for on-demand, automated generation
of new potentials for arbitrary materials. We have achieved this goal through the creation of the
SNAP (Spectral Neighbor Analysis Potential) potential, which is embodied in the SNAP standard
LAMMPS package and the FitSnap.py fitting software. The SNAP potential has a very general
form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors
of a large set of small configurations of atoms, which are obtained using high-accuracy quantum
electronic structure (QM) calculations. The local environment of each atom is characterized by
a set of bispectrum components of the local neighbor density projected on to a basis of hyper-
spherical harmonics in four dimensions. The SNAP coefficients are determined using weighted
least-squares linear regression against the full QM training set. This allows the SNAP potential to
be fit in a robust, automated manner to large QM data sets using many bispectrum components.
The calculation of the bispectrum components and the SNAP potential are implemented in the
LAMMPS parallel molecular dynamics code. The FitSnap.py software is a robust fitting package
that calculates the least-squares SNAP coefficients for an arbitrary QM dataset.

9.1 Significant Research accomplishments

The significant research accomplishments of this LDRD project are:

• Development of the SNAP potential.

• Generation of SNAP potentials for selected materials (Ta, InP, Si/SiO2).

• Scalable, efficient implementation of SNAP within LAMMPS.

• Robust fitting package (FitSnap.py) that interfaces to LAMMPS and DAKOTA to determine
optimal SNAP coefficients.

• Five external publications and seven invited talks.

• Two technical advance disclosures filed.

The two technical advance disclosures that were filed as part of this LDRD are:
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• SD no. 12361: Linear Spectral Neighbor Analysis for Interatomic Potential Energy (2012).
Submitted by Aidan Thompson and Laura Swiler.

• SD no. 13251: Efficient Algorithm for Derivatives of SNAP Bispectrum Components (2014).
Submitted by Aidan Thompson, Laura Swiler, Christian Trott, Stan Moore, and Jonathan
Moussa.

The publications that resulted from this LDRD are:

• S. J. Plimpton and A. P. Thompson , “Computational aspects of many-body potentials,” Mat.
Res. Soc. Bulletin 37 513 (2012).

• S. Levy, K. B. Ferreira, A. P. Thompson , and C. Trott, “Evaluating the Feasibility of Using
Memory Content Similarity,” Inter. J. of High Perf. Comp. (2013).

• S.G. Moore and P.S. Crozier, “Extension and evaluation of the multilevel summation,” J.
Chem. Phys. 140 234112 (2014).

• C. R. Trott, S. D. Hammond, A. P. Thompson, “SNAP: Strong scaling high fidelity molecular
dynamics simulations,” Lecture Notes in Comp. Sci. 7905 (2014).

• A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G. Tucker, “A Machine-Learning
Method for Automated Generation of Quantum-Accurate Interatomic Potentials,” J. Comp.
Phys. (submitted)(2014).

The external presentations that resulted from this LDRD are:

• CIS External Review 2013, Poster Presentation, Quantum-Accurate LAMMPS SNAP: Sim-
ulations on Petascale Platforms, A.P. Thompson, C.R. Trott, L.P. Swiler, G. Tucker, S.M.
Foiles, and S.J. Plimpton.

• A.P. Thompson, Materials Research Society Annual Meeting, San Francisco, CA, April 2014

• A.P. Thompson, American Chemical Society Annual Meeting, Indianapolis, IN, September
2013

• A.P. Thompson, Materials Design Inc., San Francisco, CA, October 2012

• A.P. Thompson, ExxonMobil Research, Annandale, NJ, April 2013

• S.M. Foiles, A. P. Thompson, L. P. Swiler, G. Tucker, C. R. Trott, C. Weinberger, TMS
Annual Meeting 2014, San Diego, CA, February 2014.

• C.R. Trott, S.D. Hammond, A.P. Thompson, Inter. Supercomp. Conf., Leipzig, Germany,
July 2014.
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Overall, the most significant accomplishment is the development of the SNAP potential and
its implementation in LAMMPS. The FitSnap.py software for generating new SNAP potentials is
available to Sandians, including training data, examples, and the potentials developed thus far. The
SNAP tantalum potential is currently being used in the Predictive Performance Margins (PPM)
project.

9.2 Future work

We anticipate developing SNAP potentials for other materials. We also are working with various
groups on data-driven potentials. We will continue to improve the SNAP code in LAMMPS.
Finally, we plan to perform large-scale LAMMPS simulations with SNAP potentials on Sequoia
and other advanced platforms.
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Appendix A

fitsnap.py User’s Manual

A.1 Introduction

Fitsnap.py, together with LAMMPS, determines the optimal set of SNAP coefficients (in a least-
squares sense; see Equation 2.16) provided a training set of atomic configurations with energies,
forces, and virial components. It is written entirely in Python and will run on any platform where
LAMMPS can run.

The basic steps of its operation are:

1. Read in JSON-format training set data and hyperparameters and write out LAMMPS data
files.

2. Run LAMMPS to calculate

• Bispectrum components and their contributions to the forces and virials of the training
set configurations.

• Reference potentials (e.g. coulombic interactions, ZBL) for the training set configura-
tions.

3. Read in LAMMPS output and construct the linear system in Equation 2.14.

4. Solve the system and write out the resulting SNAP potential and regression residuals.

The fitting process is controlled using two input files. A master input file containing a listing
of keyword/value pairs controls operation of fitsnap.py and also sets the hyperparameters that de-
termine how LAMMPS generates bispectrum components. The remaining hyperparameters, the
regression weights, are communicated in a separate file, grouplist.in. Complete descriptions of the
keywords and expected format of these two files are provided in Sections A.4 and A.6.

By caching reusable data—the parsed and converted JSON-format training set, for example—
fitsnap.py reduces the time required to generate SNAP potentials, which enables fuller exploration
of hyperparameter space in the context of Dakota-driven sensitivity analyses or optimizations.
Additionally, fitsnap.py can take full advantage of multicore workstations and clusters by invoking
LAMMPS in parallel.
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Fitsnap.py requires a minimum of Python 2.4. It is untested with Python 3.x. It also re-
quires SciPy and NumPy and a LAMMPS executable that has been built with the SNAP standard
LAMMPS package. Parallel operation requires LAMMPS to be built with MPI support.

A.2 Command Line Options

The command line options accepted by fitsnap.py are shown below. If no options are given, fit-
snap.py listens on standard input for piped or redirected input.

-h, --help

Show a help message and exit.

-c <element names>, --convert-JSON <element names>

Only convert JSON-format training set data for later (re)use. (Do not run LAMMPS or
perform a fit.) User must supply a label for each chemical element in the training data.

-i <file>, --input=<file>

Use the provided master input file.

A.3 Examples

Create a SNAP potential using the input file InP.in.

fitsnap.py < InP.in

Equivalent to the previous example.

fitsnap.py --input=InP.in

Convert the JSON-format training set configurations into LAMMPS data files and to a serialized
format. On subsequent runs, fitsnap.py will detect and use the serialized data, which is consider-
ably faster than re-converting the JSON-format files.

fitsnap.py --convert-JSON In P
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A.4 Master Input File

The master input file is used to control the operation of fitsnap.py and to provide some of the
hyperparameters that affect generation of the SNAP potential.

The format of the input file is simple: one keyword per line, followed by an equal sign (=),
followed by the value to assign to the keyword. Arbitrary whitespace is permitted with the caveat
that the keyword, equal sign, and value must be on the same line. Text following a pound sign (#)
will be ignored to the end of the line, and comments are permitted on the same lines as keywords.

Strings, integers, and floating point numbers are valid ’types’ of keyword arguments, with
integers indicating in a few cases a binary on(1)/off(0) state. It is not necessary to quote strings
unless they contain whitespace. Most input is subjected to some validation; for example, only
values [0..3] are permitted for diagonalstyle, and an error will result if any other values are used.

The following is an alphabetized listing of all the keywords understood by fitsnap.py, including
whether they are required or optional, their types, limits or restrictions on their values, default
values, and a brief explanation of their intended usage.

diagonalstyle
Optional
Type: Integer
Range: 0, 1, 2, or 3
Default: 3
Description: Along with the keyword twojmax, determines which bispectrum components are
included in the expansion. See Section 2.1 for definitions.

0: all j1, j2, j <= twojmax, j2 <= j1
1: subset satisfying j1 == j2
2: subset satisfying j1 == j2 == j3
3: subset satisfying j2 <= j1 <= j

groupFile
Optional
Type: String
Range: None
Default: grouplist.in
Description: Name of the file that contains the weighting for the training set groups. See Group
Weights for file format and further explanation.

lammpsPath
Optional
Type: String
Range: None
Default: ./lmp.exe
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Description: Path to the LAMMPS executable. The path can be absolute or relative to where
fitsnap.py is run.

maxConcurrency
Optional
Type: Integer
Range: >=0
Default: 1
Description: Maximum number of configurations that LAMMPS should evaluate concurrently.
0: Run LAMMPS using the number of cores detected on this machine
1: Run LAMMPS serially
N: Run LAMMPS using N processors. N is internally capped at the total number of configurations
in the training set.

mpiLauncher
Optional
Type: String
Range: None
Default: mpiexec
Description: MPI launcher used to invoke parallel runs of LAMMPS. This string will be prepended
to the LAMMPS invocation command, so it can be used to pass additional options to the launcher
(to oversubscribe cores, set processor affinity controls, etc).

numConstants
Optional
Type: Integer
Range: 1 or 2
Default: 2
Description: Number of constant terms in the SNAP expansion. By default, a constant term is
included for every element. A single constant term can be forced by setting numConstants to 1. If
numTypes = 1, this setting is ignored.

numTypes
Optional
Type: Integer
Range: 1 or 2
Default: 1
Description: Specify the number of chemical elements in the training set. If set to 1 (or not
specified), the following keywords must also be set: rcutfac, rmin0, zblcutinner, zblcutouter, type1,
zblz1, radelemen1. If set to 2, the following must be set: rcutfac, rmin0, zblcutinner, zblcutouter,
type1, type2, zblz1, zblz2, radelemen1, radeleme2, qcoul, rcoul.

potentialFileName
Optional
Type: String
Range: None
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Default: type1+type2
Description: Name of the generated SNAP potential files. Fitsnap.py generates three potential
files named BASE.snapcoeff, BASE.snapparam, and pot BASE.mod, where by default BASE is
type1+type2 (for numTypes=2), type1 (for numTypes = 1), or whatever the user selects for poten-
tialFileName.

qcoul
Required
Type: Floating point
Range: > 0.0
Default: None
Description: Atomic charge used in coulombic reference potential. Only required when numTypes
= 2. The first species is assigned charge of qcoul, and the second is assigned charge −qcoul.
Supplying qcoul = 0.0 to deactivate coulombic interactions currently is not supported.

radelem1 and radelem2
Required
Type: Floating point
Range: > 0.0
Default: None
Description: The contribution of the first element to the SNAP cutoff radius of the first element.
The cutoff is determined by summing the element radii and multiplying by rcutfac. If numTypes =
1, then only radelem1 is needed.

rcoul
Required
Type: Floating point
Range: > 0.0
Default: None
Description: Cutoff distance for the coulombic reference potential. Only required when numTypes
= 2.

rcutfac
Required
Type: Floating point
Range: > 0.0
Default: None
Description: Factor that multiplies the sum of the element radii (see radelem1 and 2) to compute
the SNAP cutoff distance.

rfac0
Optional
Type: Floating point
Range: > 0.0
Default: 0.99363
Description: The constant factor that multiplies π to obtain θ max

0 . See Equation 2.3 and following.
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rmin0
Required
Type: Floating point
Range: >=0.0
Default: 0.0
Description: Constant in the linear mapping from radial distance to polar angle. rmin0 is sub-
tracted from both the numerator and denominator in Equation 2.3.

runLammps
Optional
Type: Integer (on/off)
Range: 0 or 1
Default: 1
Description: Whether to run LAMMPS. If fitsnap.py was run previously in this location with
writeSystem enabled, then the LAMMPS output from that run was serialized in the file Dump-
Snap/Absystem.dat. With runLammps disabled (0), if fitsnap.py detects this file then fitsnap.py
will attempt to use the information it contains in lieu of re-running LAMMPS. (If reading the file
fails, LAMMPS will be run, anyway.) If runLammps is enabled, LAMMPS will always be run,
regardless of the presence of DumpSnap/Absystem.dat.

staleOutputCheck
Optional
Type: Integer (on/off)
Range: 0 or 1
Default: 0
Description: Check whether LAMMPS output is stale. After running LAMMPS, examine the file
modification time of all results to ensure that they are recent and not left over from a previous
study, which could occur if LAMMPS crashes. (Regardless of this setting, fitsnap.py examines the
returncode from the LAMMPS invocation and exits with an error if it is nonzero. staleOutputCheck
can be enabled for additional safety.)

twojmax
Optional
Type: Integer
Range: Any positive, even integer
Default: 6
Description: Controls the number of bispectrum components in the expansion. See the explanation
of J in Section 2.1 for details.

type1 and type2
Required
Type: String
Range: None
Default: None
Description: The names of the chemical elements in the training set. If numTypes = 1, then only
type1 is needed.
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verifyConfigs
Optional
Type: Integer (on/off)
Range: 0 or 1
Default: 1
Description: Control whether configurations in LAMMPS output are compared with configura-
tions read in from JSON. Configurations in the training set should match configurations in the
LAMMPS output. If not, something unexpected went wrong, and fitsnap.py will exit with an error
message. This check is on by default because it ordinarily is inexpensive, but for large configura-
tions or training sets with many configurations, it may be wise to deactivate it.

wj1 and wj2
Required
Type: Floating point
Range: None
Default: None
Description: The dimensionless weights in Equation 2.1. Only required when numTypes = 2.

writeDataKey
Optional
Type: Integer (on/off)
Range: 0 or 1
Default: 0
Description: Whether to write key mapping training set configurations to LAMMPS data files.
Currently, fitsnap.py sorts the configurations by number of atoms in descending order before writ-
ing LAMMPS data files. The purpose of the sorting is to achieve greater computational effi-
ciency when LAMMPS is run in parallel. With writeDataKey enabled, a human readable file,
Data/datakey.dat, is written, which associates each training set JSON file with its corresponding
LAMMPS data file in the Data folder.

writeSystem
Optional
Type: Integer (on/off)
Range: 0 or 1
Default: 0
Description: Whether to write several files that may be useful for troubleshooting and reuse by
fitsnap.py. They are:

• abtotal.dat: Contains [A|b|w] in plaintext

• DumpSnap/Absystem.dat: Serialization (Python pickle) of LAMMPS output.

• SNAP{energy,force,virial}.dat: The QM prediction, SNAP prediction (without reference
potentials contributions), and error for every configuration in the training set for each of the
indicated quantities.
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• predictions.json: Serialized (JSON) SNAP predictions (including reference potential contri-
butions) of energy, forces, and virials for all training set configurations.

This option is off by default because the files can be large and time-consuming to write. See
Section A.7 for further description of their contents.

zblz1 and zblz2
Required
Type: Integer
Range: > 0
Default: None
Description: The atomic number of each element used by the ZBL reference potential. If num-
Types = 1, then only zblz1 is needed.

zblcutinner and zblcutouter
Required
Type: Floating point
Range: > 0.0
Default: None
Description: Inner and outer radius of the smooth cutoff for the ZBL potential in units of angstroms.
That is, the smooth cutoff occurs between zblcutinner and zblcutouter.

A.5 Required Files

Fitsnap.py expects to find certain files and folders in particular locations relative to where it is run.
This section describes these requirements.

JSON/
The JSON-format training data files must be located in subfolders within a folder named JSON.
The subfolders correspond to groups, and the names of the subfolders are the group names, which
are also referred to in the group weights file.

snap/
The snap folder is a Python package and contains code used by fitsnap.py. It can reside either in
the same directory as fitsnap.py, or some directory on the user’s PYTHONPATH.

in.snap
This is the static part of the script that directs LAMMPS to calculate the bispectrum components
and other information needed by fitsnap.py. (It includes a dynamic portion that fitsnap.py writes
every time it runs.) It must be present in folder from which fitsnap.py is run.

grouplist.in
The list of training set configuration groups and their weights. The format is explained in Sec-
tion A.6
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A.6 Weights

Fitsnap.py performs a weighted regression as shown in Equation 2.16. Weights are supplied by the
user in the file grouplist.in. (The name of the file is optional; see the groupFile keyword.) Unique
weights can be applied to each quantity (energy, force, virial) within each user-defined group of
training set configurations.

The format of grouplist.in is:

# [group name] [# Configs] [Energy Wt.] [Force Wt.] [Virial Wt.]
Group1 25 1000.0 10.0 1.e-8
Group2 50 500.0 5.0 1.e-8
Group3 10 10000.0 100.0 1.e-8

The group names must be in alphabetical order, and the names and number of configurations
must correspond to the contents of the JSON folder and its subfolders.

A.7 Expected Output

Fitsnap.py produces the following output.

SNAP potential files
The three files that define a SNAP potential for use in LAMMPS are written at the end of fitting
process. They receive filenames that are either automatically generated by fitsnap.py from the
names of the elements or that are specified by the user using the potentialFileName input file
keyword. The .mod file is the master, and refers to the other two files, which have the extensions
.snapparam and .snapcoeff, by name.

SNAP{energy,force,virial} error.dat
Overall and per-group mean fitting errors are reported for each quantity.

Data/trainingset.dat
Serialized (Python pickle) training set data, which will be used by fitsnap.py on subsequent runs in
lieu of re-parsing the JSON-format training set configurations. Note that this file is created every
time fitsnap.py is run, and that fitsnap.py does NOT attempt to verify that the training data in JSON/
matches the (de)serialized information. If the training set is changed, it is the user’s responsibility
to delete the stale Data/trainingset.dat before running fitsnap.py.

abtotal.dat
Written when writeSystem is enabled. Contains [A|b|w] in plaintext.

DumpSnap/Absystem.dat
Written when writeSystem is enabled. Serialization (Python pickle) of LAMMPS output. If on
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subsequent runs of fitsnap.py, no hyperparameters that affect the calculation of the bispectrum
components are changed (i.e. only regression weights), this file can be used to avoid re-running
LAMMPS.

SNAP{energy,force,virial}.dat
Written when writeSystem is enabled. The QM prediction, SNAP prediction (without reference
potentials contributions), and error for every configuration in the training set for each of the indi-
cated quantities. The data are in three columns. Within a column, the data are arranged first by
configuration in the order shown in Data/datakey.dat. The forces are arranged by atom (in the same
order as both the training set and LAMMPS data files) then by x, y, and z component. The virial
components are in Voigt order.

predictions.json
Written when writeSystem is enabled. Serialized (JSON) SNAP predictions (including reference
potential contributions) of energy, forces, and virials for all training set configurations.

Data/datakey.dat
Written when writeSystem is enabled. A key mapping training set configurations to the LAMMPS
data and output files in the Data and DumpSnap (See below) directories, respectively.

In addition to these, two folders containing intermediate results are produced.

Data/
The Data folder contains training set configurations in LAMMPS data file format, which LAMMPS
will use to compute bispectrum components and other information. The file names contain 0-
padded indices.

DumpSnap/
LAMMPS writes all log and dump files into this folder as it runs. Upon completion, fitsnap.py
reads these files to obtain information it needs to perform the fitting.

A.8 Caching Tips and Warnings

As stated in the introduction, fitsnap.py caches certain information to avoid needless rework.
Caching can be especially beneficial in the context of a Dakota study, which may require eval-
uation of thousands of distinct sets of hyperparameters.

• Converting the JSON-format training set configurations into LAMMPS data files is a rela-
tively costly operation. If fitsnap.py is run more than once in the same location, it assumes
that the training set is unchanged and reuses the files in Data/ that it generated on the pre-
vious run. (It bears repeating that it is the user’s responsibility to delete stale versions of
Data/trainingset.dat when the training set is changed.) If on the other hand separate runs
of fitsnap.py that are based on the same training set are performed in different locations (as
will be the case when Dakota manages concurrent runs), reconversion can be avoided by
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copying or symlinking Data/trainingset.dat folder to a new location. The Data/ folder can be
populated initially by running fitsnap.py with the --convert-JSON command line option.

• Similarly, it is unnecessary to re-run LAMMPS when changing only the regression weights,
since the weights do not affect generation of the bispectrum components. To reuse LAMMPS
output, enable the input file keyword writeSystem and run fitsnap.py once. The file Dump-
Snap/Absystem.dat, which contains the serialized linear system (without the weights), will
be created. To reuse DumpSnap/Absystem.dat, disable writeSystem and runLammps in the
input file, and copy or symlink Data/trainingset.dat and DumpSnap/Absystem.dat into your
run folder.
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